The generator matrix 1 0 0 0 1 1 1 1 X^2 1 0 X 1 1 X^2 1 X^2+X 1 1 X X^2+X X 1 X^2 X^2+X 0 0 1 1 X^2 0 1 X^2+X 1 1 X^2 1 1 1 0 X^2 X^2+X 1 1 0 1 0 0 0 X^2 1 X^2+1 1 X+1 X^2+X 1 X^2+1 X^2 1 X 0 X^2+X X+1 X^2 X 1 X^2+X+1 X 1 0 1 X^2+X+1 X^2+X+1 1 1 X+1 1 X^2+1 X^2+X 1 X^2+X X X^2+X 0 X^2+X 1 X+1 X^2+1 0 0 1 0 0 1 X^2+1 X X+1 1 1 X^2 X^2+X X+1 1 X^2 1 X^2+X+1 X 1 1 1 X+1 X X^2+X X X X^2+1 X^2 X 0 1 0 0 X^2+1 X^2+1 X^2 0 X 1 X^2 X^2 1 X^2+X 0 0 0 1 X+1 X+1 X^2 1 1 1 X^2+1 X+1 0 X 0 X^2+X X^2+X X^2+1 0 X^2 X+1 X^2+X X^2+1 1 1 1 X+1 0 X^2+X+1 X^2 X^2+X+1 X+1 X^2 X^2+X+1 X 1 X^2 1 X^2+X X^2+1 1 X^2+X X^2+X X^2+X 0 0 0 0 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 0 0 0 X^2 0 0 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 0 0 X^2 generates a code of length 44 over Z2[X]/(X^3) who´s minimum homogenous weight is 38. Homogenous weight enumerator: w(x)=1x^0+338x^38+224x^39+911x^40+386x^41+1209x^42+472x^43+1327x^44+402x^45+1174x^46+346x^47+760x^48+134x^49+338x^50+70x^51+73x^52+6x^53+12x^54+6x^55+1x^58+2x^59 The gray image is a linear code over GF(2) with n=176, k=13 and d=76. This code was found by Heurico 1.16 in 2.41 seconds.